Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.215
Filtrar
1.
Drug Metab Dispos ; 52(4): 288-295, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38331874

RESUMEN

Gemcitabine (dFdC) and emtricitabine (FTC) are first-line drugs that are used for the treatment of pancreatic cancer and human immunodeficiency virus, respectively. The above drugs must undergo sequential phosphorylation to become pharmacologically active. Interindividual variability associated with the responses of the above drugs has been reported. The molecular mechanisms underlying the observed variability are yet to be elucidated. Although this could be multifactorial, nucleotidases may be involved in the dephosphorylation of drug metabolites due to their structural similarity to endogenous nucleosides. With these in mind, we performed in vitro assays using recombinant nucleotidases to assess their enzymatic activities toward the metabolites of dFdC and FTC. From the above in vitro experiments, we noticed the dephosphorylation of dFdC-monophosphate in the presence of two 5'-nucleotidases (5'-NTs), cytosolic 5'-nucleotidase IA (NT5C1A) and cytosolic 5'-nucleotidase III (NT5C3), individually. Interestingly, FTC monophosphate was dephosphorylated only in the presence of NT5C3 enzyme. Additionally, nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1) exhibited enzymatic activity toward both triphosphate metabolites of dFdC and FTC. Enzyme kinetic analysis further revealed Michaelis-Menten kinetics for both NT5C3-mediated dephosphorylation of monophosphate metabolites, as well as NTPDase 1-mediated dephosphorylation of triphosphate metabolites. Immunoblotting results confirmed the presence of NT5C3 and NTPDase 1 in both pancreatic and colorectal tissue that are target sites for dFdC and FTC treatment, respectively. Furthermore, sex-specific expression patterns of NT5C3 and NTPDase 1 were determined using mass spectrometry-based proteomics approach. Based on the above results, NT5C3 and NTPDase 1 may function in the control of the levels of dFdC and FTC metabolites. SIGNIFICANCE STATEMENT: Emtricitabine and gemcitabine are commonly used drugs for the treatment of human immunodeficiency virus and pancreatic cancer. To become pharmacologically active, both the above drugs must be phosphorylated. The variability in the responses of the above drugs can lead to poor clinical outcomes. Although the sources of drug metabolite concentration variability are multifactorial, it is vital to understand the role of nucleotidases in the tissue disposition of the above drug metabolites due to their structural similarities to endogenous nucleosides.


Asunto(s)
Gemcitabina , Neoplasias Pancreáticas , Polifosfatos , Femenino , Humanos , Masculino , 5'-Nucleotidasa/metabolismo , Desoxicitidina , Emtricitabina/química , Emtricitabina/metabolismo , Cinética , Nucleotidasas/metabolismo , Nucleótidos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo
2.
Appl Microbiol Biotechnol ; 107(7-8): 2289-2302, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36820897

RESUMEN

To study the ability of Streptomyces to utilize environmental nucleotides, we screened for strains exhibiting extracellular 5'-inosine monophosphate (IMP)-dephosphorylating activity in our collection of soil isolates and obtained two producers: NE5-10 and Y2F8-2. The enzyme responsible for the activity was purified from the culture supernatant of each strain, and its mass spectral data were used to identify the coding sequence. The gene was successfully identified in the whole genome sequence of each strain; it was located in a conserved gene cluster of phosphate-related functions and encoded an approximately 600-amino acid long protein containing an N-terminal secretion signal. The mature part of the protein exhibited similarity to a known bacterial 5'-nucleotidase. The locus of the 5'-nucleotidase gene contained genes encoding proteins involved in phosphate utilization. The conserved gene arrangement of the locus in various Streptomyces genomes suggested the genetic region to be involved in phosphate-scavenging in this group of bacteria. Phylogenetic analysis demonstrated that the isolated Streptomyces enzymes represent an uncharacterized group of bacterial 5'-nucleotidases. Enzymatic characterization of the two Streptomyces enzymes demonstrated that both enzymes exhibited 5'-nucleotidase activity but differed in terms of optimal temperature and pH, dependence on divalent cations, and substrate specificity. The Km and Vmax values of the 5'-IMP-dephosphorylating activity were 0.239 mM and 9.47 U/mg, respectively, for NE5-10 and 0.221 mM and 38.17 U/mg, respectively, for Y2F8-2. Enzyme activity in the culture broth of the two Streptomyces producers occurred in a phosphate-limitation-dependent manner, supporting their involvement in the acquisition of phosphorus. KEY POINTS: • We purified and characterized nucleotidases from two Streptomyces. • Two nucleotidases were presumed to be involved in phosphate acquisition. • It showed diversity in phosphate acquisition among microorganisms.


Asunto(s)
5'-Nucleotidasa , Streptomyces , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Secuencia de Aminoácidos , Filogenia , Nucleotidasas/genética , Nucleotidasas/metabolismo , Fosfatos
3.
EBioMedicine ; 86: 104378, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36462405

RESUMEN

BACKGROUND: Miltefosine treatment failure in visceral leishmaniasis in Brazil has been associated with deletion of the miltefosine susceptibility locus (MSL) in Leishmania infantum. The MSL comprises four genes, 3'-nucleotidase/nucleases (NUC1 and NUC2); helicase-like protein (HLP); and 3,2-trans-enoyl-CoA isomerase (TEI). METHODS: In this study CRISPR-Cas9 was used to either epitope tag or delete NUC1, NUC2, HLP and TEI, to investigate their role in miltefosine resistance mechanisms. Additionally, miltefosine transporter genes and miltefosine-mediated reactive oxygen species homeostasis were assessed in 26 L. infantum clinical isolates. A comparative lipidomic analysis was also performed to investigate the molecular basis of miltefosine resistance. FINDINGS: Deletion of both NUC1, NUC2 from the MSL was associated with a significant decrease in miltefosine susceptibility, which was restored after re-expression. Metabolomic analysis of parasites lacking the MSL or NUC1 and NUC2 identified an increase in the parasite lipid content, including ergosterol; these lipids may contribute to miltefosine resistance by binding the drug in the membrane. Parasites lacking the MSL are more resistant to lipid metabolism perturbation caused by miltefosine and NUC1 and NUC2 are involved in this pathway. Additionally, L. infantum parasites lacking the MSL isolated from patients who relapsed after miltefosine treatment were found to modulate nitric oxide accumulation in host macrophages. INTERPRETATION: Altogether, these data indicate that multifactorial mechanisms are involved in natural resistance to miltefosine in L. infantum and that the absence of the 3'nucleotidase/nuclease genes NUC1 and NUC2 contributes to the phenotype. FUNDING: MRC GCRF and FAPES.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmania infantum/genética , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Fosforilcolina/farmacología , Fosforilcolina/uso terapéutico , Nucleotidasas/metabolismo
4.
BMC Cancer ; 22(1): 117, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35090419

RESUMEN

BACKGROUND: Calcium-activated nucleotidase 1 (CANT1), functions as a calcium-dependent nucleotidase with a preference for UDP. However, the potential clinical value of CANT1 in lung adenocarcinoma (LA) has not been fully clarified. Thus, we sought to identify its potential biological function and mechanism through bioinformatics analysis and in vitro experiments in LA. METHODS: In the present study, we comprehensively investigated the prognostic role of CANT1 in LA patients through bioinformatics analysis and in vitro experiments. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were utilized to analyze the expression of CANT1 in LA patients and their clinical-prognostic value. The immunohistochemistry staining was obtained from the Human Protein Atlas (HPA). A Cox regression model was used to evaluate prognostic factors. Gene ontology (GO) and Gene set enrichment analysis (GSEA) was performed to explore the potential regulatory mechanism of CANT1 in the development of LA. Moreover, we also examined the relationship between CANT1 expression and DNA methylation. Finally, we did in vitro experiments to evaluate the biological behavior and role of CANT1 in LA cells (LACs). RESULTS: Our study showed that the CANT1 expression was significantly elevated in the LA tissues compared with the normal lung tissues. Increased CANT1 expression was significantly associated with the TN stage. A univariate Cox analysis indicated that high CANT1 expression levels were correlated with poor overall survival (OS) in LA. Besides, CANT1 expression was independently associated with OS in multivariate analysis. GO and GSEA analysis showed the enrichment of mitotic nuclear division, DNA methylation, and DNA damage. Then we found that the high expression of CANT1 is positively correlated with hypomethylation. The methylation level was associated with prognosis in LA patients. Finally, in vitro experiments indicated that knockdown of CANT1 resulted in decreased cell proliferation, invasion, and G1 phase cell-cycle arrest in LACs. CONCLUSION: The present study suggested that CANT1 may serve as a potential prognosis biomarker in patients with LA. High CANT1 expression and promoter demethylation was associated with worse outcome. Finally, in vitro experiments verified the biological functions and behaviors of CANT1 in LA.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/mortalidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Nucleotidasas/metabolismo , Anciano , Biomarcadores de Tumor/genética , Proliferación Celular/genética , Daño del ADN/genética , Metilación de ADN/genética , Femenino , Ontología de Genes , Humanos , Masculino , Pronóstico
5.
Bioengineered ; 13(2): 3183-3193, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35068336

RESUMEN

Dysregulation of calcium-activated nucleotides 1 (CANT1) has been observed in different organs. Thus, its biological function in cancer has increasingly attracted researchers. The current work aims to study the CANT1 role in lung cancer and understand the underlying pathological mechanisms. High amplification of CANT1 was observed in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tissues compared to normal tissues. The high-CANT1 patients showed a dismal prognosis in comparison with the low-CANT1 patients. Highly expressed CANT1 was significantly associated with the N stage of LUSC patients. Ectopic expression of CANT1 conspicuously increased the proliferation and viability of A549 cells. Conversely, CANT1 depletion resulted in adverse effects in H1299 cells. CANT1 depletion also resulted in the retardation of tumor growth in vivo. Mechanically, we found that CANT1 could elevate NF-ĸB (nuclear factor-k-gene binding) transcriptional activity in a concentration-dependent manner. This regulatory relationship was also established by the Western blot technique. Inhibiting NF-ĸB can significantly blunt the increased NF-κ-B Inhibitor-α (IκBα) expression caused by CANT1 overexpression in A549 cells. In conclusion, highly amplified CANT1 promotes the proliferation and viability of lung cancer cells. We also elucidate a new signaling axis of CANT1-NF-ĸB in lung cancer. This approach might be a promising strategy for lung cancer treatment.


Asunto(s)
Neoplasias Pulmonares/metabolismo , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Nucleotidasas/metabolismo , Transducción de Señal , Células A549 , Animales , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones , Ratones Desnudos , FN-kappa B/genética , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Nucleotidasas/genética
6.
Adv Biol Regul ; 83: 100858, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920982

RESUMEN

Bisphosphate nucleotidase 2 (BPNT2) is a member of a family of phosphatases that are directly inhibited by lithium, the first-line medication for bipolar disorder. BPNT2 is localized to the Golgi, where it metabolizes the by-products of glycosaminoglycan sulfation reactions. BPNT2-knockout mice exhibit impairments in total-body chondroitin-4-sulfation which lead to abnormal skeletal development (chondrodysplasia). These mice die in the perinatal period, which has previously prevented the investigation of BPNT2 in the adult nervous system. Previous work has demonstrated the importance of chondroitin sulfation in the brain, as chondroitin-4-sulfate is a major component of perineuronal nets (PNNs), a specialized neuronal extracellular matrix which mediates synaptic plasticity and regulates certain behaviors. We hypothesized that the loss of BPNT2 in the nervous system would decrease chondroitin-4-sulfation and PNNs in the brain, which would coincide with behavioral abnormalities. We used Cre-lox breeding to knockout Bpnt2 specifically in the nervous system using Bpnt2 floxed (fl/fl) animals and a Nestin-driven Cre recombinase. These mice are viable into adulthood, and do not display gross physical abnormalities. We identified decreases in total glycosaminoglycan sulfation across selected brain regions, and specifically show decreases in chondroitin-4-sulfation which correspond with increases in chondroitin-6-sulfation. Interestingly, these changes were not correlated with gross alterations in PNNs. We also subjected these mice to a selection of neurobehavioral assessments and did not identify significant behavioral abnormalities. In summary, this work demonstrates that BPNT2, a known target of lithium, is important for glycosaminoglycan sulfation in the brain, suggesting that lithium-mediated inhibition of BPNT2 in the nervous system warrants further investigation.


Asunto(s)
Corteza Cerebral , Sulfatos de Condroitina , Hipocampo , Animales , Corteza Cerebral/metabolismo , Sulfatos de Condroitina/metabolismo , Hipocampo/metabolismo , Compuestos de Litio/farmacología , Ratones , Nucleotidasas/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-32954967

RESUMEN

Lactococcus lactis has been reported unable to directly incorporate mononucleotides but instead requires their external dephosphorylation by nucleotidases to the corresponding nucleosides prior to their incorporation. Although Lactobacillus gasseri PA-3 (PA-3), a strain of lactic acid bacteria, has been found to incorporate purine mononucleotides such as adenosine 5'-monophosphate (AMP), it remains unclear whether these bacteria directly incorporate these mononucleotides or incorporate them after dephosphorylation to the corresponding nucleosides. This study evaluated whether PA-3 incorporated radioactively-labeled mononucleotides in the presence or absence of the 5'-nucleotidase inhibitor α,ß-methylene ADP (APCP). PA-3 took up 14C-AMP in the presence of APCP, as well as incorporating 32P-AMP. Furthermore, radioactivity was detected in the RNA/DNA of bacterial cells cultured in the presence of 32P-AMP. Taken together, these findings indicated that PA-3 incorporated purine mononucleotides directly rather than after their dephosphorylation to purine nucleosides and that PA-3 utilizes these purine mononucleotides in the synthesis of RNA and DNA. Although additional studies are required to identify purine mononucleotide transporters in PA-3, this study is the first to show that some lactic acid bacteria directly incorporate purine mononucleotides and use them for growth.


Asunto(s)
Lactobacillus gasseri , Adenosina Monofosfato/metabolismo , Lactobacillus gasseri/metabolismo , Nucleotidasas/metabolismo , Nucleósidos de Purina/metabolismo
8.
Int J Mol Sci ; 22(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34768881

RESUMEN

Although the enhanced responses against serum cell-free DNA (cfDNA) in cases of sepsis-a life-threatening organ dysfunction due to systemic infection-are understood, the influence of the cytosolic DNA receptor cGAS (cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase) on sepsis is still unclear. Here, experiments on cGAS deficient (cGAS-/-) mice were conducted using cecal ligation and puncture (CLP) and lipopolysaccharide (LPS) injection sepsis models and macrophages. Severity of CLP in cGAS-/- mice was less severe than in wildtype (WT) mice, as indicated by mortality, serum LPS, cfDNA, leukopenia, cytokines (TNF-α, IL-6 and IL-10), organ histology (lung, liver and kidney) and spleen apoptosis. With the LPS injection model, serum cytokines in cGAS-/- mice were lower than in WT mice, despite the similar serum cfDNA level. Likewise, in LPS-activated WT macrophages, the expression of several mitochondria-associated genes (as revealed by RNA sequencing analysis) and a profound reduction in mitochondrial parameters, including maximal respiration (determined by extracellular flux analysis), DNA (mtDNA) and mitochondrial abundance (revealed by fluorescent staining), were demonstrated. These data implied the impact of cfDNA resulting from LPS-induced cell injury. In parallel, an additive effect of bacterial DNA on LPS, seen in comparison with LPS alone, was demonstrated in WT macrophages, but not in cGAS-/- cells, as indicated by supernatant cytokines (TNF-α and IL-6), M1 proinflammatory polarization (iNOS and IL-1ß), cGAS, IFN-γ and supernatant cyclic GMP-AMP (cGAMP). In conclusion, cGAS activation by cfDNA from hosts (especially mtDNA) and bacteria was found to induce an additive proinflammatory effect on LPS-activated macrophages which was perhaps responsible for the more pronounced sepsis hyperinflammation observed in WT mice compared with the cGAS-/- group.


Asunto(s)
Nucleotidiltransferasas/metabolismo , Sepsis/metabolismo , Animales , Ciego/metabolismo , Citocinas/metabolismo , ADN/metabolismo , Interleucina-10/metabolismo , Lipopolisacáridos/efectos adversos , Lipopolisacáridos/farmacología , Hígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleotidasas/metabolismo , Nucleótidos Cíclicos , Nucleotidiltransferasas/deficiencia , Nucleotidiltransferasas/genética , Sepsis/prevención & control , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/metabolismo
9.
Bioengineered ; 12(1): 8953-8964, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34652259

RESUMEN

Apoptosis of lens epithelial cells contributed to the formation of age-related cataract (ARC), and previous data revealed that circular RNA (circRNA) was responsible for the underneath mechanism. The study was organized to explore the role of circular RNA erythrocyte membrane protein band 4.1 (circ_EPB41) in ultraviolet (UV) irradiation-induced apoptosis of lens epithelial cells. SRA01/04 cells were irradiated with UV to mimic the ARC cell model. The RNA levels of circ_EPB41, microRNA-24-3p (miR-24-3p), and 3'(2'), 5'-bisphosphate nucleotidase 1 (BPNT1) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. 5-Ethynyl-29-deoxyuridine, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide and DNA content quantitation assays were performed to investigate cell proliferation. Flow cytometry was conducted to analyze cell apoptosis. Dual-luciferase reporter assay was implemented to confirm the interaction among circ_EPB41, miR-24-3p, and BPNT1. Our data showed that circ_EPB41 and BPNT1 expression were downregulated in ARC tissues and UV-irradiated SRA01/04 cells as compared with normal anterior lens capsules and untreated SRA01/04 cells. Circ_EPB41 overexpression ameliorated the effects of UV irradiation on the proliferation and apoptosis of SRA01/04 cells. Besides, miR-24-3p, a target miRNA of circ_EPB41, attenuated circ_EPB41 introduction-mediated proliferation, and apoptosis of UV-irradiated SRA01/04 cells. MiR-24-3p regulated UV irradiation-induced effects by targeting BPNT1. Importantly, it was found that circ_EPB41 stimulated BPNT1 production by miR-24-3p. Taken together, the enforced expression of circ_EPB41 ameliorated UV irradiation-induced apoptosis of lens epithelial cells by miR-24-3p/BPNT1 pathway, providing us with a potential target for the therapy of UV-caused ARC.


Asunto(s)
Catarata/patología , Proteínas del Citoesqueleto/genética , Células Epiteliales/patología , Cristalino/patología , Proteínas de la Membrana/genética , MicroARNs/genética , Nucleotidasas/metabolismo , ARN Circular/genética , Anciano , Apoptosis , Catarata/genética , Catarata/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Humanos , Cristalino/metabolismo , Cristalino/efectos de la radiación , Persona de Mediana Edad , Nucleotidasas/genética , Rayos Ultravioleta
10.
J Virol ; 95(19): e0110421, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34232734

RESUMEN

Modified vaccinia virus Ankara (MVA) was derived by repeated passaging in chick fibroblasts, during which deletions and mutations rendered the virus unable to replicate in most mammalian cells. Marker rescue experiments demonstrated that the host range defect could be overcome by replacing DNA that had been deleted from near the left end of the genome. One virus isolate, however, recovered the ability to replicate in monkey BS-C-1 cells but not human cells without added DNA, suggesting that it arose from a spontaneous mutation. Here, we showed that variants with enhanced ability to replicate in BS-C-1 cells could be isolated by blind passaging of MVA and that in each there was a point mutation leading to an amino acid substitution in the D10 decapping enzyme. The sufficiency of these single mutations to enhance host range was confirmed by constructing recombinant viruses. The D10 mutations occurred at N- or C-terminal locations distal to the active site, suggesting an indirect effect on decapping or on another previously unknown role of D10. Although increased amounts of viral mRNA and proteins were found in BS-C-1 cells infected with the mutants compared to those with parental MVA, the increases were much less than the 1- to 2-log-higher virus yields. Nevertheless, a contributing role for diminished decapping in overcoming the host range defect was consistent with increased replication and viral protein synthesis in BS-C-1 cells infected with an MVA engineered to have active-site mutations that abrogate decapping activity entirely. Optimal decapping may vary depending on the biological context. IMPORTANCE Modified vaccinia virus Ankara (MVA) is an attenuated virus that is approved as a smallpox vaccine and is in clinical trials as a vector for other pathogens. The safety of MVA is due in large part to its inability to replicate in mammalian cells. Although host range restriction is considered a stable feature of the virus, we describe the occurrence of spontaneous mutations in MVA that increase replication considerably in monkey BS-C-1 cells but only slightly in human cells. The mutants contain single nucleotide changes that lead to amino acid substitutions in one of the two decapping enzymes. Although the spontaneous mutations are distant from the decapping enzyme active site, engineered active-site mutations also increased virus replication in BS-C-1 cells. The effects of these mutations on the immunogenicity of MVA vectors remain to be determined.


Asunto(s)
Nucleotidasas/genética , Nucleotidasas/metabolismo , Virus Vaccinia/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Animales , Dominio Catalítico , Línea Celular , Embrión de Pollo , Chlorocebus aethiops , Recombinación Homóloga , Especificidad del Huésped , Humanos , Nucleotidasas/química , Sistemas de Lectura Abierta , Mutación Puntual , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Eliminación de Secuencia , Virus Vaccinia/genética , Ensayo de Placa Viral , Proteínas Virales/química , Replicación Viral
11.
Neurochem Int ; 148: 105111, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34171414

RESUMEN

Early life stressors, such as social isolation (SI), can disrupt brain development contributing to behavioral and neurochemical alterations in adulthood. Purinergic receptors and ectonucleotidases are key regulators of brain development in embryonic and postnatal periods, and they are involved in several psychiatric disorders, including schizophrenia. The extracellular ATP drives purinergic signaling by activating P2X and P2Y receptors and it is hydrolyzed by ectonucleotidases in adenosine, which activates P1 receptors. The purpose of this study was to investigate if SI, a rodent model used to replicate abnormal behavior relevant to schizophrenia, impacts purinergic signaling. Male Wistar rats were reared from weaning in group-housed or SI conditions for 8 weeks. SI rats exhibited impairment in prepulse inhibition and social interaction. SI presented increased ADP levels in cerebrospinal fluid and ADP hydrolysis in the hippocampus and striatum synaptosomes. Purinergic receptor expressions were upregulated in the prefrontal cortex and downregulated in the hippocampus and striatum. A2A receptors were differentially expressed in SI prefrontal cortex and the striatum, suggesting distinct roles in these brain structures. SI also presented decreased ADP, adenosine, and guanosine levels in the cerebrospinal fluid in response to D-amphetamine. Like patients with schizophrenia, uric acid levels were prominently increased in SI rats after D-amphetamine challenge. We suggest that the SI-induced deficits in prepulse inhibition might be related to the SI-induced changes in purinergic signaling. We provide new evidence that purinergic signaling is markedly affected in a rat model relevant to schizophrenia, pointing out the importance of purinergic system in psychiatry conditions.


Asunto(s)
Receptores Purinérgicos , Transducción de Señal , Aislamiento Social , Adenosina Difosfato/líquido cefalorraquídeo , Animales , Conducta Animal , Estimulantes del Sistema Nervioso Central/farmacología , Dextroanfetamina/farmacología , Masculino , Nucleotidasas/metabolismo , Ratas , Ratas Wistar , Receptor de Adenosina A2A/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Reflejo de Sobresalto , Psicología del Esquizofrénico , Conducta Social , Aislamiento Social/psicología , Destete
12.
Molecules ; 26(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923386

RESUMEN

The 5'-nucleotidase UshA and the 3'-nucleotidase CpdB from Escherichia coli are broad-specificity phosphohydrolases with similar two-domain structures. Their N-terminal domains (UshA_Ndom and CpdB_Ndom) contain the catalytic site, and their C-terminal domains (UshA_Cdom and CpdB_Cdom) contain a substrate-binding site responsible for specificity. Both enzymes show only partial overlap in their substrate specificities. So, it was decided to investigate the catalytic behavior of chimeras bearing the UshA catalytic domain and the CpdB specificity domain, or vice versa. UshA_Ndom-CpdB_Cdom and CpdB_Ndom-UshA_Cdom were constructed and tested on substrates specific to UshA (5'-AMP, CDP-choline, UDP-glucose) or to CpdB (3'-AMP), as well as on 2',3'-cAMP and on the common phosphodiester substrate bis-4-NPP (bis-4-nitrophenylphosphate). The chimeras did show neither 5'-nucleotidase nor 3'-nucleotidase activity. When compared to UshA, UshA_Ndom-CpdB_Cdom conserved high activity on bis-4-NPP, some on CDP-choline and UDP-glucose, and displayed activity on 2',3'-cAMP. When compared to CpdB, CpdB_Ndom-UshA_Cdom conserved phosphodiesterase activities on 2',3'-cAMP and bis-4-NPP, and gained activity on the phosphoanhydride CDP-choline. Therefore, the non-nucleotidase activities of UshA and CpdB are not fully dependent on the interplay between domains. The specificity domains may confer the chimeras some of the phosphodiester or phosphoanhydride selectivity displayed when associated with their native partners. Contrarily, the nucleotidase activity of UshA and CpdB depends strictly on the interplay between their native catalytic and specificity domains.


Asunto(s)
Nucleotidasas/metabolismo , Sitios de Unión , Catálisis , Hidrolasas Diéster Fosfóricas/metabolismo , Especificidad por Sustrato
13.
Anticancer Drugs ; 32(7): 693-702, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33675611

RESUMEN

Lung squamous carcinoma (LUSC) is the second most frequent subtype of non-small cell lung cancer. Rarely gene alterations are identified in LUSC. Therefore, identifying LUSC-related genes to explain the relevant molecular mechanism is urgently needed. A potential biomarker, calcium-activated nucleotidase 1 (CANT1), was elevated in tissues of LUSC patients relative to normal cases based on the TCGA and/or GTEx database. CCK-8 and transwell tests were then implemented to measure the proliferative, invasive and migratory capacities, and showed that knockdown of CANT1 blocked LUSC cells proliferation. miR-607, predicted as an upstream factor for CANT1, was declined in LUSC using TargetScan analysis and luciferase activity test. Low miR-607 expression was related with unfavorable outcomes of LUSC patients. Moreover, miR-607 downregulation elevated cell viability, invasion and migration in LUSC cells, which was antagonized by si-CANT1. GEPIA website was accessed to estimate the relevance between CANT1 and epithelial-mesenchymal transition (EMT)-related positive factors. The protein levels of Fibronectin, Vimentin, Snail and ß-catenin were altered due to the abnormal CANT1 and miR-607 expression. Together, these data unveiled that miR-607/CANT1 pair may exert a vital role in the progression of LUSC through mediating EMT process, which would furnish an available therapeutic therapy for LUSC.


Asunto(s)
Carcinoma de Células Escamosas/patología , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Nucleotidasas/metabolismo , Biomarcadores de Tumor , Línea Celular Tumoral , Supervivencia Celular , Regulación hacia Abajo , Fibronectinas/biosíntesis , Regulación Neoplásica de la Expresión Génica , Humanos , Vimentina/biosíntesis
14.
Vet Microbiol ; 246: 108740, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32605757

RESUMEN

Alphaherpesviral ribonucleotide reductase (RNR) is composed of large (pUL39, RR1) and small (pUL40, RR2) subunits. This enzyme can catalyze conversion of ribonucleotide to deoxynucleotide diphosphates that are further phosphorylated into deoxynucleotide triphosphate (dNTPs). The dNTPs are substrates for de novo viral DNA synthesis in infected host cells. The enzymatic activity of RNR depends on association between RR1 and RR2. However, the molecular basis underlying alphaherpesviral RNR complex formation is still largely unknown. In the current study, we investigated the pseudorabies virus (PRV) RNR interaction domains in pUL39 and pUL40. The interaction of pUL39 and pUL40 was identified by co-immunoprecipitation (co-IP) and colocalization analyses. Furthermore, the interaction amino acid (aa) domains in pUL39 and pUL40 were mapped using a series of truncated proteins. Consequently, the 90-210 aa in pUL39 was identified to be responsible for the interaction with pUL40. In turn, the 66-152, 218-258 and 280-303 aa in pUL40 could interact with pUL39, respectively. Deletion of 90-210 aa in pUL39 completely abrogated the interaction with pUL40. Deletion of 66-152, 218-258 and 280-303 aa in pUL40 remarkably weakened the interaction with pUL39, whereas a weak interaction could still be observed. Amino acid sequence alignments showed that the interaction domains identified in PRV pUL39/pUL40 were relatively non-conserved among the selected RNR subunits in alphaherpesviruses HSV1, HSV2, HHV3(VZV), BHV1, EHV1 and DEV. However, they were relatively conserved among PRV, HSV1 and HSV2. Collectively, our findings provided some molecular targets for inhibition of pUL39-pUL40 interaction to antagonize viral replication in PRV infected hosts.


Asunto(s)
Herpesvirus Suido 1/enzimología , Subunidades de Proteína/química , Ribonucleótido Reductasas/química , Línea Celular , Células HEK293 , Humanos , Nucleotidasas/metabolismo , Alineación de Secuencia , Replicación Viral
15.
mBio ; 11(3)2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605980

RESUMEN

Sinorhizobium meliloti is an alphaproteobacterium belonging to the Rhizobiales Bacteria from this order elongate their cell wall at the new cell pole, generated by cell division. Screening for protein interaction partners of the previously characterized polar growth factors RgsP and RgsM, we identified the inner membrane components of the Tol-Pal system (TolQ and TolR) and novel Rgs (rhizobial growth and septation) proteins with unknown functions. TolQ, Pal, and all Rgs proteins, except for RgsE, were indispensable for S. meliloti cell growth. Six of the Rgs proteins, TolQ, and Pal localized to the growing cell pole in the cell elongation phase and to the septum in predivisional cells, and three Rgs proteins localized to the growing cell pole only. The putative FtsN-like protein RgsS contains a conserved SPOR domain and is indispensable at the early stages of cell division. The components of the Tol-Pal system were required at the late stages of cell division. RgsE, a homolog of the Agrobacterium tumefaciens growth pole ring protein GPR, has an important role in maintaining the normal growth rate and rod cell shape. RgsD is a periplasmic protein with the ability to bind peptidoglycan. Analysis of the phylogenetic distribution of the Rgs proteins showed that they are conserved in Rhizobiales and mostly absent from other alphaproteobacterial orders, suggesting a conserved role of these proteins in polar growth.IMPORTANCE Bacterial cell proliferation involves cell growth and septum formation followed by cell division. For cell growth, bacteria have evolved different complex mechanisms. The most prevalent growth mode of rod-shaped bacteria is cell elongation by incorporating new peptidoglycans in a dispersed manner along the sidewall. A small share of rod-shaped bacteria, including the alphaproteobacterial Rhizobiales, grow unipolarly. Here, we identified and initially characterized a set of Rgs (rhizobial growth and septation) proteins, which are involved in cell division and unipolar growth of Sinorhizobium meliloti and highly conserved in Rhizobiales Our data expand the knowledge of components of the polarly localized machinery driving cell wall growth and suggest a complex of Rgs proteins with components of the divisome, differing in composition between the polar cell elongation zone and the septum.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular , Nucleotidasas/metabolismo , Proteínas RGS/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sinorhizobium meliloti/crecimiento & desarrollo , Agrobacterium tumefaciens/genética , Ciclo Celular , Polaridad Celular , Nucleotidasas/genética , Filogenia , Proteínas RGS/genética , Rhizobiaceae/genética , Proteínas de Schizosaccharomyces pombe/genética , Sinorhizobium meliloti/citología , Sinorhizobium meliloti/genética
16.
Purinergic Signal ; 16(2): 187-211, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32367441

RESUMEN

The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,ß-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.


Asunto(s)
Nucleótidos de Adenina/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina/metabolismo , Purina-Nucleósido Fosforilasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Animales , Masculino , Nucleotidasas/metabolismo , Ratas
17.
Adv Biol Regul ; 76: 100694, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32019729

RESUMEN

Sulfur assimilation is an essential metabolic pathway that regulates sulfation, amino acid metabolism, nucleotide hydrolysis, and organismal homeostasis. We recently reported that mice lacking bisphosphate 3'-nucleotidase (BPNT1), a key regulator of sulfur assimilation, develop iron-deficiency anemia (IDA) and anasarca. Here we demonstrate two approaches that successfully reduce metabolic toxicity caused by loss of BPNT1: 1) dietary methionine restriction and 2) overproduction of a key transcriptional regulator hypoxia inducible factor 2α (Hif-2a). Reduction of methionine in the diet reverses IDA in mice lacking BPNT1, through a mechanism of downregulation of sulfur assimilation metabolic toxicity. Gaining Hif-2a acts through a different mechanism by restoring iron homeostatic gene expression in BPNT1 deficient mouse intestinal organoids. Finally, as loss of BPNT1 impairs expression of known genetic modifiers of iron-overload, we demonstrate that intestinal-epithelium specific loss of BPNT1 attenuates hepatic iron accumulation in mice with homozygous C282Y mutations in homeostatic iron regulator (HFEC282Y), the most common cause of hemochromatosis in humans. Overall, our study uncovers genetic and dietary strategies to overcome anemia caused by defects in sulfur assimilation and identifies BPNT1 as a potential target for the treatment of hemochromatosis.


Asunto(s)
Anemia Ferropénica/genética , Proteína de la Hemocromatosis/genética , Hemocromatosis/genética , Hierro/metabolismo , Nucleotidasas/genética , Azufre/metabolismo , Anemia Ferropénica/metabolismo , Anemia Ferropénica/patología , Anemia Ferropénica/prevención & control , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dieta , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Hemocromatosis/metabolismo , Hemocromatosis/patología , Hemocromatosis/prevención & control , Proteína de la Hemocromatosis/metabolismo , Homeostasis/genética , Homocigoto , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Hígado/metabolismo , Hígado/patología , Masculino , Metionina/administración & dosificación , Metionina/deficiencia , Ratones , Ratones Noqueados , Mutación , Nucleotidasas/metabolismo , Organoides/metabolismo , Organoides/patología , Transducción de Señal
18.
RNA ; 26(1): 29-43, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31619505

RESUMEN

During tRNA maturation in yeast, aberrant pre-tRNAs are targeted for 3'-5' degradation by the nuclear surveillance pathway, and aberrant mature tRNAs are targeted for 5'-3' degradation by the rapid tRNA decay (RTD) pathway. RTD is catalyzed by the 5'-3' exonucleases Xrn1 and Rat1, which act on tRNAs with an exposed 5' end due to the lack of certain body modifications or the presence of destabilizing mutations in the acceptor stem, T-stem, or tRNA fold. RTD is inhibited by mutation of MET22, likely due to accumulation of the Met22 substrate adenosine 3',5' bis-phosphate, which inhibits 5'-3' exonucleases. Here we provide evidence for a new tRNA quality control pathway in which intron-containing pre-tRNAs with destabilizing mutations in the anticodon stem are targeted for Met22-dependent pre-tRNA decay (MPD). Multiple SUP4οc anticodon stem variants that are subject to MPD each perturb the bulge-helix-bulge structure formed by the anticodon stem-loop and intron, which is important for splicing, resulting in substantial accumulation of end-matured unspliced pre-tRNA as well as pre-tRNA decay. Mutations that restore exon-intron structure commensurately reduce pre-tRNA accumulation and MPD. The MPD pathway can contribute substantially to decay of anticodon stem variants, since pre-tRNA decay is largely suppressed by removal of the intron or by restoration of exon-intron structure, each also resulting in increased tRNA levels. The MPD pathway is general as it extends to variants of tRNATyr(GUA) and tRNASer(CGA) These results demonstrate that the integrity of the anticodon stem-loop and the efficiency of tRNA splicing are monitored by a quality control pathway.


Asunto(s)
Anticodón/genética , Nucleotidasas/metabolismo , Precursores del ARN/genética , Estabilidad del ARN , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Exones/genética , Intrones/genética , Mutación , Conformación de Ácido Nucleico , Nucleotidasas/genética , Empalme del ARN
19.
Proc Natl Acad Sci U S A ; 117(2): 993-999, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879354

RESUMEN

An intimate link exists between circadian clocks and metabolism with nearly every metabolic pathway in the mammalian liver under circadian control. Circadian regulation of metabolism is largely driven by rhythmic transcriptional activation of clock-controlled genes. Among these output genes, Nocturnin (Noct) has one of the highest amplitude rhythms at the mRNA level. The Noct gene encodes a protein (NOC) that is highly conserved with the endonuclease/exonuclease/phosphatase (EEP) domain-containing CCR4 family of deadenylases, but highly purified NOC possesses little or no ribonuclease activity. Here, we show that NOC utilizes the dinucleotide NADP(H) as a substrate, removing the 2' phosphate to generate NAD(H), and is a direct regulator of oxidative stress response through its NADPH 2' phosphatase activity. Furthermore, we describe two isoforms of NOC in the mouse liver. The cytoplasmic form of NOC is constitutively expressed and associates externally with membranes of other organelles, including the endoplasmic reticulum, via N-terminal glycine myristoylation. In contrast, the mitochondrial form of NOC possesses high-amplitude circadian rhythmicity with peak expression level during the early dark phase. These findings suggest that NOC regulates local intracellular concentrations of NADP(H) in a manner that changes over the course of the day.


Asunto(s)
Ritmo Circadiano/fisiología , Hígado/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidasas/metabolismo , Estrés Oxidativo/fisiología , Factores de Transcripción/metabolismo , Animales , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas Nucleares/genética , ARN Mensajero/metabolismo , Factores de Transcripción/genética , Transcriptoma
20.
Vet Microbiol ; 241: 108528, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31882365

RESUMEN

The cholinergic, purinergic and oxidative stress systems were related to nervous system damage in some pathologies, as well as being involved in pro-inflammatory and anti-inflammatory pathways. The objective was to investigate changes in purinergic, cholinergic systems and oxidative stress related to the neuropathology of listeriosis. Gerbils were used as experimental models. The animals were divided in two groups: control and infected. The animals were orally infected with 5 × 108 CFU/animal of the pathogenic strain of Listeria monocytogenes. Collected of material was 6 and 12th days post-infection (PI). Infected animals showed moderate mixed inflammatory infiltrates in the liver. The spleen and brain was used for PCR analyses, confirming infection by L. monocytogenes. Increase in number of total leukocytes because of an increase in lymphocytes in infected (P < 0.001). ATP and ADP hydrolysis by NTPDase was lower at 6 and 12th days PI in infected animals than in the control group. ADA (adenosine deaminase) activity was higher on the 6th day PI (P < 0.05) and decreased on the 12th day PI (P < 0.05) in infected animals. AChE (acetylcholinesterase) activity did not differ between groups on the 6th day PI; however, activity decreased in infected group on the 12th day PI (P < 0.05). On the 12th day PI, an increase of oxygen-reactive species levels and lower catalase and superoxide dismutase activities in the infected group was observed, characterizing a situation of cerebral oxidative stress. The inflammatory and oxidative mechanisms are present in listeriosis in asymptomatic animals, and that ectonucleotidases and cholinesterase's are involved in immunomodulation.


Asunto(s)
Listeria monocytogenes/patogenicidad , Listeriosis/metabolismo , Listeriosis/patología , Acetilcolinesterasa/metabolismo , Adenosina Desaminasa/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/microbiología , Encéfalo/patología , Catalasa/metabolismo , ADN Bacteriano/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/microbiología , Gerbillinae , Hematócrito , Intestino Delgado/patología , Recuento de Leucocitos , Listeria monocytogenes/genética , Listeriosis/enzimología , Listeriosis/transmisión , Hígado/patología , Nucleotidasas/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/análisis , Bazo/microbiología , Bazo/patología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...